A High-Resolution Ternary Model Demonstrates How PEGylated 2D Nanomaterial Stimulates Integrin αv β8 on Cell Membrane

Adv Sci (Weinh). 2021 Jun;8(11):e2004506. doi: 10.1002/advs.202004506. Epub 2021 Mar 23.

Abstract

Bio-nano interfaces are integral to all applications of nanomaterials in biomedicine. In addition to peptide-ligand-functionalized nanomaterials, passivation on 2D nanomaterials has emerged as a new regulatory factor for integrin activation. However, the mechanisms underlying such ligand-independent processes are poorly understood. Here, using graphene oxide passivated with polyethylene glycol (GO-PEG) as a test bed, a ternary simulation model is constructed that also includes a membrane and both subunits of integrin αv β8 to characterize GO-PEG-mediated integrin activation on the cell membrane in a ligand-independent manner. Combined with the experimental findings, production simulations of the ternary model show a three-phase mechanotransduction process in the vertical interaction mode. Specifically, GO-PEG first induces lipid aggregation-mediated integrin proximity, followed by transmembrane domain rotation and separation, leading to the extension and activation of extracellular domains. Thus, this study presents a complete picture of the interaction between passivated 2D nanomaterials and cell membranes to mediate integrin activation, and provides insights into the potential de novo design and rational use of novel desirable nanomaterials at diverse bio-nano interfaces.

Keywords: conformational changes; integrin activation; molecular dynamics simulations; passivated 2D nanomaterials; ternary model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Membrane / drug effects
  • Graphite / chemistry
  • Graphite / pharmacology*
  • Humans
  • Integrin alphaV / chemistry*
  • Integrin beta Chains / chemistry*
  • Ligands
  • Mechanotransduction, Cellular
  • Nanostructures / chemistry*
  • Polyethylene Glycols / pharmacology
  • Protein Domains / drug effects

Substances

  • Integrin alphaV
  • Integrin beta Chains
  • Ligands
  • graphene oxide
  • integrin beta8
  • Polyethylene Glycols
  • Graphite