Iridium-Catalyzed Hydroarylation via C-H Bond Activation

Chem Rec. 2021 Dec;21(12):3532-3545. doi: 10.1002/tcr.202100109. Epub 2021 Jun 8.

Abstract

Hydroarylation reactions via C-H activation, which compensate for shortcomings of classical methods based on the Friedel-Crafts reaction, is one of the most attractive methods to synthesize substituted arenes. This Personal Account reviews our recent studies on iridium-catalyzed intermolecular hydroarylation of vinyl ethers, alkynes, bicycloalkenes, and 1,3-dienes, and intramolecular hydroarylation of m-allyloxyphenyl ketones, where asymmetric addition reactions are included. A cationic iridium catalyst, which is generated from chloroiridium [IrCl] and NaBArF 4 [ArF =3,5-(CF3 )2 C6 H3 ], or a hydroxoiridium [Ir(OH)] complex is effective in catalyzing the hydroarylation depending on the substrates. 1,5-Cyclooctadiene (cod), chiral dienes, and conventional bisphosphines function as ligands controlling the high reactivity and selectivity of the catalysts in the hydroarylation. H/D exchange reaction of alkenes by use of a key intermediate of the hydroarylation reaction is also described.

Keywords: C−H activation; Iridium; asymmetric synthesis; catalysis; hydroarylation.

Publication types

  • Review