3D Interaction Homology: Hydropathic Analyses of the "π-Cation" and "π-π" Interaction Motifs in Phenylalanine, Tyrosine, and Tryptophan Residues

J Chem Inf Model. 2021 Jun 28;61(6):2937-2956. doi: 10.1021/acs.jcim.1c00235. Epub 2021 Jun 8.

Abstract

Three-dimensional (3D) maps of the hydropathic environments of protein amino acid residues are information-rich descriptors of preferred conformations, interaction types and energetics, and solvent accessibility. The interactions made by each residue are the primary factor for rotamer selection and the secondary, tertiary, and even quaternary protein structure. Our evolving basis set of environmental data for each residue type can be used to understand the protein structure. This work focuses on the aromatic residues phenylalanine, tyrosine, and tryptophan and their structural roles. We calculated and analyzed side chain-to-environment 3D maps for over 70,000 residues of these three types that reveal, with respect to hydrophobic and polar interactions, the environment around each. After binning with backbone ϕ/ψ and side chain χ1, we clustered each bin by 3D similarities between map-map pairs. For each of the three residue types, four bins were examined in detail: one in the β-pleat, two in the right-hand α-helix, and one in the left-hand α-helix regions of the Ramachandran plot. For high degrees of side chain burial, encapsulation of the side chain by hydrophobic interactions is ubiquitous. The more solvent-exposed side chains are more likely to be involved in polar interactions with their environments. Evidence for π-π interactions was observed in about half of the residues surveyed [phenylalanine (PHE): 53.3%, tyrosine (TYR): 34.1%, and tryptophan (TRP): 55.7%], but on an energy basis, this contributed to only ∼4% of the total. Evidence for π-cation interactions was observed in 14.1% of PHE, 8.3% of TYR, and 26.8% of TRP residues, but on an energy basis, this contributed to only ∼1%. This recognition of even these subtle interactions in the 3D hydropathic environment maps is key support for our interaction homology paradigm of protein structure elucidation and possibly prediction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cations
  • Phenylalanine*
  • Proteins
  • Tryptophan
  • Tyrosine*

Substances

  • Cations
  • Proteins
  • Tyrosine
  • Phenylalanine
  • Tryptophan