The life cycle of SPβ and related phages

Arch Virol. 2021 Aug;166(8):2119-2130. doi: 10.1007/s00705-021-05116-9. Epub 2021 Jun 7.

Abstract

Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object.

Publication types

  • Review

MeSH terms

  • Bacillus Phages / genetics
  • Bacillus Phages / growth & development*
  • Bacillus subtilis / virology*
  • Genome Size
  • Genome, Viral
  • Life Cycle Stages
  • Lysogeny
  • Siphoviridae / classification
  • Siphoviridae / genetics
  • Siphoviridae / growth & development*
  • Whole Genome Sequencing