Natural Molybdenite- and Tyrosinase-Based Amperometric Catechol Biosensor Using Acridine Orange as a Glue, Anchor, and Stabilizer for the Adsorbed Tyrosinase

ACS Omega. 2021 May 18;6(21):13719-13727. doi: 10.1021/acsomega.1c00973. eCollection 2021 Jun 1.

Abstract

To develop a natural mineral-based electrochemical enzyme biosensor, natural molybdenite (MLN), tyrosinase (TYR), and acridine orange (AO) were coadsorbed onto a glassy carbon electrode (GCE). The developed TYR/AO/MLN-GCE-based amperometric TYR biosensor exhibited excellent performance for highly sensitive determination of catechol (linear range, 0.1-80 μM; sensitivity, 0.0315 μA/μM; LOD, 0.029 μM; response time, <4 s) with good reproducibility and good operational and storage stabilities. The electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance with dissipation (QCM-D) revealed interesting roles of AO: (1) an efficient glue for enhancing the amount of the adsorbed TYR on the MLN-GCE, (2) an anchor for efficient orientation of the adsorbed TYR on the MLN-GCE, and (3) a stabilizer providing a suitable microenvironment for the adsorbed TYR on the MLN-GCE surface. This physical adsorption-based AO-coupled enzyme-modification strategy onto natural MLN would be a versatile strategy to develop cost-effective and environment-friendly natural mineral-based electrochemical biosensors and bioelectronic devices.