Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain

Front Genet. 2021 May 20:12:657636. doi: 10.3389/fgene.2021.657636. eCollection 2021.

Abstract

Background: Neurodegenerative Diseases (NDs) are age-dependent and include Alzheimer's disease (AD), Parkinson's disease (PD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), and so on. There have been numerous studies showing that accelerated aging is closely related (even the driver of) ND, thus promoting imbalances in cellular homeostasis. However, the mechanisms of how different ND types are related/triggered by advanced aging are still unclear. Therefore, there is an urgent need to explore the potential markers/mechanisms of different ND types based on aging acceleration at a system level. Methods: AD, PD, PSP, FTD, and aging markers were identified by supervised machine learning methods. The aging acceleration differential networks were constructed based on the aging score. Both the enrichment analysis and sensitivity analysis were carried out to investigate both common and specific mechanisms among different ND types in the context of aging acceleration. Results: The extracellular fluid, cellular metabolisms, and inflammatory response were identified as the common driving factors of cellular homeostasis imbalances during the accelerated aging process. In addition, Ca ion imbalance, abnormal protein depositions, DNA damage, and cytoplasmic DNA in macrophages were also revealed to be special mechanisms that further promote AD, PD, PSP, and FTD, respectively. Conclusion: The accelerated epigenetic aging mechanisms of different ND types were integrated and compared through our computational pipeline.

Keywords: aging; cellular homeostasis; network analysis; neurodegenerative disease; supervised machine learning.