Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches

Ann Oncol. 2021 Sep;32(9):1101-1110. doi: 10.1016/j.annonc.2021.06.001. Epub 2021 Jun 2.

Abstract

Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, with Kirsten rat sarcoma (KRAS) being the most commonly mutated RAS isoform. Overall, KRAS accounts for 85% of RAS mutations observed in human cancers and is present in 35% of lung adenocarcinomas (LUADs). While the use of targeted therapies and immune checkpoint inhibitors (CPIs) has drastically changed the treatment landscape of advanced non-small-cell lung cancer (NSCLC) in recent years, historic attempts to target KRAS (both direct and indirect approaches) have had little success, and no KRAS-specific targeted therapies have been approved to date for patients in this molecular subset of NSCLC. With the discovery by Ostrem, Shokat, and colleagues of the switch II pocket on the surface of the active and inactive forms of KRAS, we now have an improved understanding of the complex interactions involved in the RAS family of signaling proteins which has led to the development of a number of promising direct KRASG12C inhibitors, such as sotorasib and adagrasib. In previously treated patients with KRASG12C-mutant NSCLC, clinical activity has been shown for both sotorasib and adagrasib monotherapy; these data suggest promising new treatment options are on the horizon. With the stage now set for a new era in the treatment of KRASG12C-mutated NSCLC, many questions remain to be answered in order to further elucidate the mechanisms of resistance, how best to use combination strategies, and if KRASG12C inhibitors will have suitable activity in earlier lines of therapy for patients with advanced/metastatic NSCLC.

Keywords: G12C; KRAS; KRAS(G12C); non-small-cell lung cancer.

Publication types

  • Review

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Mutation
  • Piperazines
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Pyridines
  • Pyrimidines

Substances

  • KRAS protein, human
  • Piperazines
  • Pyridines
  • Pyrimidines
  • sotorasib
  • Proto-Oncogene Proteins p21(ras)