Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb

Sci Total Environ. 2021 Aug 20:783:147494. doi: 10.1016/j.scitotenv.2021.147494. Epub 2021 May 3.

Abstract

Heavy metals are considered major environmental pollutants. Soil microorganisms represent a predominant component of soils ecosystems, yet there is little information regarding hormetic responses of soil microorganisms to single and combined exposures to heavy metals. In the present study, to explore and predict the hormetic response of soil microorganisms, dose-response relationships of bacterial and fungal populations to single and combined treatments of cadmium (Cd) and lead (Pb) were evaluated. The results revealed hormetic responses of bacterial and fungal populations to both single and combined Cd and Pb treatments. The maximum stimulation (Mmax; relative to control treatment with no metals) of bacterial and fungal populations was 40% at 2 mg Cd/kg and 60% at 160 mg Pb/kg. An enhanced Mmax occurred in bacterial (50%) and fungal (75%) populations in the presence of the binary mixtures of 0.6 mg Cd/kg + 160 mg Pb/kg and 4.0 mg Cd/kg + 200 mg Pb/kg, suggesting positive additivity. This study showed that the hormetic effects of the mixtures were related to the independent effect of Cd and Pb, but they could not be predicted by the single effect of Cd or Pb. These new findings of the hormetic response of soil microorganisms to single treatments of Cd and Pb and their binary mixtures can facilitate the determination and minimization of ecological risks in heavy metal-polluted soils.

Keywords: Binary chemical mixtures; Heavy metal; Hormesis; Microbial population; Mixture effect.

MeSH terms

  • Bacteria
  • Cadmium / toxicity
  • Ecosystem
  • Fungi
  • Hormesis
  • Lead / toxicity
  • Metals, Heavy* / toxicity
  • Soil
  • Soil Pollutants* / analysis
  • Soil Pollutants* / toxicity

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • Cadmium
  • Lead