Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO2) in synthetic and natural waters

Sci Total Environ. 2021 Aug 25:784:147019. doi: 10.1016/j.scitotenv.2021.147019. Epub 2021 Apr 10.

Abstract

The homoaggregation of titanium dioxide nanoparticles (nTiO2) and their heteroaggregation with ubiquitous natural clay colloids are crucial processes affecting the environmental transport and fate of nTiO2, whereas the latter has received less attention. In this study, the effects of pH, electrolytes, natural organic matter (NOM), and montmorillonite on the homo- and heteroaggregation of nTiO2 were systematically investigated. The isoelectric point of bare nTiO2 was 6.98, whereas TiO2-montmorillonite mixtures remained negative charged due to the reduced particle surface potential by heteroaggregation. Homoaggregation of nTiO2 was mainly affected by anions, whereas heteroaggregation in TiO2-montmorillonite mixtures was mainly affected by cations. Heteroaggregation between nTiO2 and montmorillonite involved the adsorption of CC/CH. Intensive aggregation of nTiO2 was observed with 4 mg/L montmorillonite, whereas with 20 mg/L montmorillonite, the aggregation was significantly inhibited by the over-coverage of montmorillonite. NOM was attached to the surface of nTiO2 with the adsorption of functional groups involving CC/CH and OCO. The addition of NOM effectively reduced the homo- and heteroaggregation of nTiO2, and the stabilizing effect was enhanced with the increased molecular weight and aromatic/aliphatic fraction in NOM. Besides electrostatic repulsion, steric repulsion could also be one of the main stabilization mechanisms of NOM. With Ca2+ in the solutions, the stabilizing effect of NOM was significantly weakened through cation bridging. The addition of montmorillonite could facilitate the aggregation of nTiO2 in the presence of NOM. The homo- and heteroaggregation of nTiO2 were also observed in 7 different types of natural waters. Homoaggregation predominated in waters with high ionic strength and low NOM contents (seawater and groundwater), whereas heteroaggregation predominated in surface freshwater and wastewater systems. The results reflect the instability of nTiO2 in natural aquatic environments and the potential risk they pose to benthic organisms.

Keywords: Heteroaggregation; Homoaggregation; Montmorillonite; Natural waters; nTiO(2).