Photoinduced Strong Metal-Support Interaction for Enhanced Catalysis

J Am Chem Soc. 2021 Jun 16;143(23):8521-8526. doi: 10.1021/jacs.0c12817. Epub 2021 Jun 3.

Abstract

Strong metal-support interaction (SMSI) construction is a pivotal strategy to afford thermally robust nanocatalysts in industrial catalysis, but thermally induced reactions (>300 °C) in specific gaseous atmospheres are generally required in traditional procedures. In this work, a photochemistry-driven methodology was demonstrated for SMSI construction under ambient conditions. Encapsulation of Pd nanoparticles with a TiOx overlayer, the presence of Ti3+ species, and suppression of CO adsorption were achieved upon UV irradiation. The key lies in the generation of separated photoinduced reductive electrons (e-) and oxidative holes (h+), which subsequently trigger the formation of Ti3+ species/oxygen vacancies (Ov) and then interfacial Pd-Ov-Ti3+ sites, affording a Pd/TiO2 SMSI with enhanced catalytic hydrogenation efficiency. The as-constructed SMSI layer was reversible, and the photodriven procedure could be extended to Pd/ZnO and Pt/TiO2.