Radiofrequency-induced heating of broken and abandoned implant leads during magnetic resonance examinations

Magn Reson Med. 2021 Oct;86(4):2156-2164. doi: 10.1002/mrm.28836. Epub 2021 Jun 3.

Abstract

Purpose: The risks of RF-induced heating of active implantable medical device (AIMD) leads during MR examinations must be well understood and realistically assessed. In this study, we evaluate the potential additional risks of broken and abandoned (cut) leads.

Methods: First, we defined a generic AIMD with a metallic implantable pulse generator (IPG) and a 100-cm long lead containing 1 or 2 wires. Next, we numerically estimated the deposited in vitro lead-tip power for an intact lead, as well as with wire breaks placed at 10 cm intervals. We studied the effect of the break size (wire gap width), as well as the presence of an intact wire parallel to the broken wire, and experimentally validated the numeric results for the configurations with maximum deposited in vitro lead-tip power. Finally, we performed a Tier 3 assessment of the deposited in vivo lead-tip power for the intact and broken lead in 4 high resolution virtual population anatomic models for over 54,000 MR examination scenarios.

Results: The enhancement of the deposited lead-tip power for the broken leads, compared to the intact lead, reached 30-fold in isoelectric exposure, and 16-fold in realistic clinical exposures. The presence of a nearby intact wire, or even a nearby broken wire, reduced this enhancement factor to <7-fold over the intact lead.

Conclusion: Broken and abandoned leads can pose increased risk of RF-induced lead-tip heating to patients undergoing MR examinations. The potential enhancement of deposited in vivo lead-tip power depends on location and type of the wire break, lead design, and clinical routing of the lead, and should be carefully considered when performing risk assessment for MR examinations and MR conditional labeling.

Keywords: AIMD; MR safety; MRI; RF heating; implant safety; lead damage; virtual population.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Heating*
  • Hot Temperature
  • Humans
  • Magnetic Resonance Imaging*
  • Magnetic Resonance Spectroscopy
  • Phantoms, Imaging
  • Prostheses and Implants / adverse effects
  • Radio Waves / adverse effects