Microbial debromination of hexabromocyclododecanes

Appl Microbiol Biotechnol. 2021 Jun;105(11):4535-4550. doi: 10.1007/s00253-021-11095-3. Epub 2021 Jun 2.

Abstract

Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: • Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. • Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. • Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.

Keywords: Degradative bacteria; Dehalogenase; HBCDs; Microbial debromination.

Publication types

  • Review

MeSH terms

  • Biodegradation, Environmental
  • Environmental Monitoring
  • Environmental Pollutants* / analysis
  • Flame Retardants*
  • Humans
  • Hydrocarbons, Brominated* / analysis

Substances

  • Environmental Pollutants
  • Flame Retardants
  • Hydrocarbons, Brominated
  • hexabromocyclododecane