Temporally Resolved Electrochemical Interrogation for Stochastic Collision Dynamics of Electrogenerated Single Polybromide Droplets

Anal Chem. 2021 Jun 15;93(23):8336-8344. doi: 10.1021/acs.analchem.1c01366. Epub 2021 Jun 2.

Abstract

In this article, we present electrochemical interrogation for collision dynamics of electrogenerated individual polybromide ionic liquid (PBIL) droplets through chronoamperometry combined with fast scan cyclic voltammetry (CA-FSCV). In the CA mode of CA-FSCV, a Pt ultramicroelectrode (UME) acts as the electrochemical generator for PBIL droplets by holding the oxidation potential for Br- in a given time, while FSCV is repetitively performed at a certain frequency. In the FSCV mode of CA-FSCV, a Pt UME serves as the probe to electrochemically monitor Br3- reduction for an adsorbed PBIL droplet during collision with a high temporal resolution. Based on the newly introduced CA-FSCV, we can estimate the dynamic changes in the following parameters for a short collision time: the contact radius of a PBIL droplet on a Pt UME, the concentration of Br- in the droplet, and the apparent charge transfer rate constant for electro-reduction of Br3- to Br- in the droplet, koapp. Moreover, a computational calculation using molecular dynamics is presented that can explain the change in koapp as a function of time for Br- electrolysis in a PBIL droplet. Based on the quantitative estimation of the above parameters, we suggest a more advanced mechanism for the stochastic electrochemical collision process of a PBIL droplet. These findings are important for understanding QBr2n+1/QBr half redox reactions in aqueous energy storage systems, such as Zn-Br redox flow batteries and Br-related redox enhanced electrochemical capacitors.