TNFα Enhances Tamoxifen Sensitivity through Dissociation of ERα-p53-NCOR1 Complexes in ERα-Positive Breast Cancer

Cancers (Basel). 2021 May 26;13(11):2601. doi: 10.3390/cancers13112601.

Abstract

Tamoxifen is widely used as a medication for estrogen receptor α (ERα)-positive breast cancer, despite the ~50% incidence of tamoxifen resistance. To overcome such resistance, combining tamoxifen with other agents is considered an effective approach. Here, through in vitro studies with ER-positive MCF7 cells and ER-negative MDA-MB-231 cells, validated by the use of xenograft mice, we investigated the potential of tumor necrosis factor α (TNFα) to enhance tamoxifen sensitivity and identified NCOR1 as a key downstream regulator. TNFα specifically degraded nuclear receptor corepressor 1 (NCOR1) in MCF7 cells. Moreover, knockdown of NCOR1, similar to TNFα treatment, suppressed cancer cell growth and promoted apoptosis only in MCF7 cells and MCF7 xenograft mice through the stabilization of p53, a tumor suppressor protein. Interestingly, NCOR1 knockdown with TNFα treatment increased the occupancy of p53 at the p21 promoter, while decreasing that of ERα. Notably, NCOR1 formed a complex with p53 and ERα, which was disrupted by TNFα. Finally, combinatorial treatment with tamoxifen, TNFα and short-hairpin (sh)-NCOR1 resulted in enhanced suppression of tumor growth in MCF7 xenograft mice compared to single tamoxifen treatment. In conclusion, TNFα promoted tamoxifen sensitivity through the dissociation of the ERα-p53-NCOR1 complex, pointing at NCOR1 as a putative therapeutic target for overcoming tamoxifen resistance in ERα-positive breast cancer.

Keywords: ER-positive breast cancer; NCOR1; TNFα; tamoxifen resistance.