Genetic Variant c.245A>G (p.Asn82Ser) in GIPC3 Gene Is a Frequent Cause of Hereditary Nonsyndromic Sensorineural Hearing Loss in Chuvash Population

Genes (Basel). 2021 May 27;12(6):820. doi: 10.3390/genes12060820.

Abstract

Hereditary nonsyndromic sensorineural hearing loss is a disease in which hearing loss occurs due to damage to the organ of the inner ear, the auditory nerve, or the center in the brain that is responsible for the perception of sound, characterized by wide locus and allelic heterogeneity and different types of inheritance. Given the diversity of population of the Russian Federation, it seems necessary to study the ethnic characteristics of the molecular causes of the disease. The aim is to study the molecular and genetic causes of hereditary sensorineural hearing loss in Chuvash, the fifth largest ethnic group in Russia. DNA samples of 26 patients from 21 unrelated Chuvash families from the Republic of Chuvashia, in whom the diagnosis of hereditary sensorineural hearing loss had been established, were analyzed using a combination of targeted Sanger sequencing, multiplex ligase-dependent probe amplification, and whole exome sequencing. The homozygous variant NM_133261.3(GIPC3):c.245A>G (p.Asn82Ser) is the major molecular cause of hereditary sensorineural hearing loss in 23% of Chuvash patients (OMIM #601869). Its frequency was 25% in patients and 1.1% in healthy Chuvash population. Genotyping of the NM_133261.3(GIPC3):c.245A>G (p.Asn82Ser) variant in five neighboring populations from the Volga-Ural region (Russian, Udmurt, Mary, Tatar, Bushkir) found no evidence that this variant is common in those populations.

Keywords: Chuvash population; GIPC3; deafness; hearing loss; population frequency; “bottle neck” effect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics*
  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Female
  • Gene Frequency
  • Hearing Loss, Sensorineural / genetics*
  • Humans
  • Infant
  • Male
  • Mutation, Missense
  • Polymorphism, Single Nucleotide*
  • Russia

Substances

  • Adaptor Proteins, Signal Transducing
  • GIPC3 protein, human