Overview of the Structure-Dynamics-Function Relationships in Borohydrides for Use as Solid-State Electrolytes in Battery Applications

Molecules. 2021 May 28;26(11):3239. doi: 10.3390/molecules26113239.

Abstract

The goal of this article is to highlight crucial breakthroughs in solid-state ionic conduction in borohydrides for battery applications. Borohydrides, Mz+BxHy, form in various molecular structures, for example, nido-M+BH4; closo-M2+B10H10; closo-M2+B12H12; and planar-M6+B6H6 with M = cations such as Li+, K+, Na+, Ca2+, and Mg2+, which can participate in ionic conduction. This overview article will fully explore the phase space of boron-hydrogen chemistry in order to discuss parameters that optimize these materials as solid electrolytes for battery applications. Key properties for effective solid-state electrolytes, including ionic conduction, electrochemical window, high energy density, and resistance to dendrite formation, are also discussed. Because of their open structures (for closo-boranes) leading to rapid ionic conduction, and their ability to undergo phase transition between low conductivity and high conductivity phases, borohydrides deserve a focused discussion and further experimental efforts. One challenge that remains is the low electrochemical stability of borohydrides. This overview article highlights current knowledge and additionally recommends a path towards further computational and experimental research efforts.

Keywords: borohydride; closo-borane; lithium ion battery; solid-state battery.

Publication types

  • Review