The Critical Role of TRIB2 in Cancer and Therapy Resistance

Cancers (Basel). 2021 May 30;13(11):2701. doi: 10.3390/cancers13112701.

Abstract

The Tribbles pseudokinases family consists of TRIB1, TRIB2, TRIB3 and STK40 and, although evolutionarily conserved, they have distinctive characteristics. Tribbles members are expressed in a context and cell compartment-dependent manner. For example, TRIB1 and TRIB2 have potent oncogenic activities in vertebrate cells. Since the identification of Tribbles proteins as modulators of multiple signalling pathways, recent studies have linked their expression with several pathologies, including cancer. Tribbles proteins act as protein adaptors involved in the ubiquitin-proteasome degradation system, as they bridge the gap between substrates and E3 ligases. Between TRIB family members, TRIB2 is the most ancestral member of the family. TRIB2 is involved in protein homeostasis regulation of C/EBPα, β-catenin and TCF4. On the other hand, TRIB2 interacts with MAPKK, AKT and NFkB proteins, involved in cell survival, proliferation and immune response. Here, we review the characteristic features of TRIB2 structure and signalling and its role in many cancer subtypes with an emphasis on TRIB2 function in therapy resistance in melanoma, leukemia and glioblastoma. The strong evidence between TRIB2 expression and chemoresistance provides an attractive opportunity for targeting TRIB2.

Keywords: TRIB2; Tribbles; biomarker; cancer; pseudokinases; signalling; therapy resistance.

Publication types

  • Review