Mine Vegetation Identification via Ecological Monitoring and Deep Belief Network

Plants (Basel). 2021 May 30;10(6):1099. doi: 10.3390/plants10061099.

Abstract

Based on the characteristics of remote sensing images of mine vegetation, this research studied the application of deep belief network model in mine vegetation identification. Through vegetation identification and classification, the ecological environment index of mining area was determined according to the analysis of vegetation and coverage. Deep learning algorithm is adopted to improve the depth study, the vegetation coverage in the analysis was studied. Parameters and parameter values were selected for identification by establishing the optimal experimental design. The experimental results were compared with remote sensing images to determine the accuracy of deep learning identification and the effectiveness of the algorithm. When the sample size is 2,000,000 pixels, through repeated tests and classification effect comparison, the optimal parameter setting suitable for mine vegetation identification is obtained. Parameter setting: the number of network layers is 3 layers; the number of hidden layer neurons is 60. The learning rate is 0.01 and the number of iterations is 2. The average recognition rate of vegetation coverage was 95.95%, outperforming some other models, and the accuracy rate of kappa coefficient was 0.95, which can accurately reflect the vegetation coverage. The clearer the satellite image is, the more accurate the recognition result is, and the accuracy is closer to 100%. The identification of vegetation coverage has important guiding significance for determining the area and area of ecological restoration.

Keywords: deep belief network; deep learning; ecological monitoring; mine; remote sensing image; vegetation.