Lattice Vibrations and Time-Dependent Evolution of Local Phonon Modes during Exciton Formation in Conjugated Polymeric Molecules

Polymers (Basel). 2021 May 25;13(11):1724. doi: 10.3390/polym13111724.

Abstract

Based on nonadiabatic molecular dynamics that integrate electronic transitions with the time-dependent phonon spectrum, this article provides a panoramic landscape of the dynamical process during the formation of photoinduced excitons in conjugated polymers. When external optical beam/pulses with intensities of 10 µJ/cm2 and 20 µJ/cm2 are utilized to excite a conjugated polymer, it is found that the electronic transition firstly triggers local lattice vibrations, which not only locally distort alternating bonds but change the phonon spectrum as well. Within the first 60 fs, the occurrence of local distortion of alternating bonds accompanies the localization of the excited-state's electron. Up to 100 fs, both alternating bonds and the excited electronic state are well localized in the middle of the polymer chain. In the first ~200 fs, the strong lattice vibration makes a local phonon mode at 1097.7 cm-1 appear in the phonon spectrum. The change of electron states then induces the self-trapping effect to act on the following photoexcitation process of 1.2 ps. During the following relaxation of 1.0 ps, new local infrared phonon modes begin to occur. All of this, incorporated with the occurrence of local infrared phonon modes and localized electronic states at the end of the relaxation, results in completed exciton formation.

Keywords: conjugated polymers; dynamic simulation; excitons; phonons.