Metallisation of Textiles and Protection of Conductive Layers: An Overview of Application Techniques

Sensors (Basel). 2021 May 18;21(10):3508. doi: 10.3390/s21103508.

Abstract

The rapid growth in wearable technology has recently stimulated the development of conductive textiles for broad application purposes, i.e., wearable electronics, heat generators, sensors, electromagnetic interference (EMI) shielding, optoelectronic and photonics. Textile material, which was always considered just as the interface between the wearer and the environment, now plays a more active role in different sectors, such as sport, healthcare, security, entertainment, military, and technical sectors, etc. This expansion in applied development of e-textiles is governed by a vast amount of research work conducted by increasingly interdisciplinary teams and presented systematic review highlights and assesses, in a comprehensive manner, recent research in the field of conductive textiles and their potential application for wearable electronics (so called e-textiles), as well as development of advanced application techniques to obtain conductivity, with emphasis on metal-containing coatings. Furthermore, an overview of protective compounds was provided, which are suitable for the protection of metallized textile surfaces against corrosion, mechanical forces, abrasion, and other external factors, influencing negatively on the adhesion and durability of the conductive layers during textiles' lifetime (wear and care). The challenges, drawbacks and further opportunities in these fields are also discussed critically.

Keywords: coatings techniques; conductive textiles; durability; e-textiles; metallization; protective coatings.

Publication types

  • Review