FOCUSED-Short-Term Wind Speed Forecast Correction Algorithm Based on Successive NWP Forecasts for Use in Traffic Control Decision Support Systems

Sensors (Basel). 2021 May 13;21(10):3405. doi: 10.3390/s21103405.

Abstract

In this paper, we propose a new algorithm, called FOCUSED (FOrecast Correction Using Successive prEDictions), for forecast correction of short-term wind speed predictions. We developed FOCUSED with the aim of improving the forecast of bora gusts, which frequently result in high-speed wind situations dangerous for traffic. The motivation arises from occasionally ambiguous results of the currently deployed decision support system, which aids traffic management in strong and gusty wind conditions at the coast of Croatia. The proposed correction algorithm uses characteristics of numerical weather prediction models to iteratively forecast the wind speed multiple times for the same future window. We use these iterative predictions as input features of the FOCUSED algorithm and get the corrected predictions as the output. We compared the proposed algorithm with artificial neural networks, random forests, support vector machines, and linear regression to demonstrate the superiority of the algorithm's performance on a data set comprising five years of real data measurements at the Croatian bridge "Krk" and complementary historical forecasts by ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) numerical weather prediction model.

Keywords: forecast correction; neural networks; successive forecasts; traffic management; wind speed prediction.