Electromagnetically Induced Transparency-Like Effect by Dark-Dark Mode Coupling

Nanomaterials (Basel). 2021 May 20;11(5):1350. doi: 10.3390/nano11051350.

Abstract

Electromagnetically induced transparency-like (EIT-like) effect is a promising research area for applications of slow light, sensing and metamaterials. The EIT-like effect is generally formed by the destructive interference of bright-dark mode coupling and bright-bright mode coupling. There are seldom reports about EIT-like effect realized by the coupling of two dark modes. In this paper, we numerically and theoretically demonstrated that the EIT-like effect is achieved through dark-dark mode coupling of two waveguide resonances in a compound nanosystem with metal grating and multilayer structure. If we introduce |1⟩, |2⟩ and |3⟩ to represent the surface plasmon polaritons (SPPs) resonance, waveguide resonance in layer 2, and waveguide resonance in layer 4, the destructive interference occurs between two pathways of |0⟩→|1⟩→|2⟩ and |0⟩→|1⟩→|2⟩→|3⟩→|2⟩, where |0⟩ is the ground state without excitation. Our work will stimulate more studies on EIT-like effect with dark-dark mode coupling in other systems.

Keywords: electromagnetically induced transparency; surface plasmon polaritons; waveguide resonance.