Modeling of Heat Stress in Sows Part 2: Comparison of Various Thermal Comfort Indices

Animals (Basel). 2021 May 21;11(6):1498. doi: 10.3390/ani11061498.

Abstract

Heat stress has an adverse effect on the production performance of sows, and causes a large economic loss every year. The thermal environment index is an important indicator for evaluating the level of heat stress in animals. Many thermal indices have been used to analyze the environment of the pig house, including temperature and humidity index (THI), effective temperature (ET), equivalent temperature index of sows (ETIS), and enthalpy (H), among others. Different heat indices have different characteristics, and it is necessary to analyze and compare the characteristics of heat indices to select a relatively suitable heat index for specific application. This article reviews the thermal environment indices used in the process of sow breeding, and compares various heat indices in four ways: (1) Holding the value of the thermal index constant and analyzing the equivalent temperature changes caused by the relative humidity. (2) Analyzing the variations of ET and ETIS caused by changes in air velocity. (3) Conducting a comparative analysis of a variety of isothermal lines fitted to the psychrometric chart. (4) Analyzing the distributions of various heat index values inside the sow barn and the correlation between various heat indices and sow heat dissipation with the use of computational fluid dynamics (CFD) technology. The results show that the ETIS performs better than other thermal indices in the analysis of sows' thermal environment, followed by THI2, THI4, and THI7. Different pigs have different heat transfer characteristics and different adaptability to the environment. Therefore, based on the above results, the following suggestions have been given: The thermal index thresholds need to be divided based on the adaptability of pigs to the environment at different growth stages and the different climates in different regions. An appropriate threshold for a thermal index can provide a theoretical basis for the environmental control of the pig house.

Keywords: black globe-humidity index; effective temperature; enthalpy; equivalent temperature index for sows; temperature and humidity index.