Regulation and Role of Transcription Factors in Osteogenesis

Int J Mol Sci. 2021 May 21;22(11):5445. doi: 10.3390/ijms22115445.

Abstract

Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.

Keywords: bone; circadian rhythm; epigenetics; microRNA; osteoblast; osteoblast differentiation; osteogenesis; skeletogenesis; transcription factor.

Publication types

  • Review

MeSH terms

  • Animals
  • Bone and Bones / physiology
  • Cell Differentiation / genetics
  • Gene Expression Regulation / genetics
  • Humans
  • Osteogenesis / genetics*
  • Transcription Factors / genetics*
  • Transcription, Genetic / genetics*

Substances

  • Transcription Factors