Dendritic Forest-Like Ag Nanostructures Prepared Using Fluoride-Assisted Galvanic Replacement Reaction for SERS Applications

Nanomaterials (Basel). 2021 May 21;11(6):1359. doi: 10.3390/nano11061359.

Abstract

Dendritic forest-like Ag nanostructures were deposited on a silicon wafer through fluoride-assisted galvanic replacement reaction (FAGRR) in aqueous AgNO3 and buffered oxide etchant. The prepared nanostructures were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma-optical emission spectroscopy, a surface profiler (alpha step), and X-ray diffraction. Additionally, the dendritic forest-like Ag nanostructures were characterized using surface-enhanced Raman scattering (SERS) when a 4-mercaptobenzoic acid (4-MBA) monolayer was adsorbed on the Ag surface. The Ag nanostructures exhibited intense SERS signal from 4-MBA because of their rough surface, and this intense signal led to an intense local electromagnetic field upon electromagnetic excitation. The enhancement factor for 4-MBA molecules adsorbed on the Ag nanostructures was calculated to be 9.18 × 108. Furthermore, common Raman reporters such as rhodamine 6G, 4-aminothiolphenol, 5,5'-dithiobis-2-nitrobenzoic acid, and carboxyfluorescein (FAM) were characterized on these dendritic forest-like Ag nanostructures, leading to the development of an ultrasensitive SERS-based DNA sensor with a limit of detection of 33.5 nM of 15-mer oligonucleotide.

Keywords: dendritic forest-like Ag nanostructures; fluoride-assisted galvanic replacement reaction synthesis; surface-enhanced Raman scattering spectroscopy.