Identification of Cotton Leaf Lesions Using Deep Learning Techniques

Sensors (Basel). 2021 May 3;21(9):3169. doi: 10.3390/s21093169.

Abstract

The use of deep learning models to identify lesions on cotton leaves on the basis of images of the crop in the field is proposed in this article. Cultivated in most of the world, cotton is one of the economically most important agricultural crops. Its cultivation in tropical regions has made it the target of a wide spectrum of agricultural pests and diseases, and efficient solutions are required. Moreover, the symptoms of the main pests and diseases cannot be differentiated in the initial stages, and the correct identification of a lesion can be difficult for the producer. To help resolve the problem, the present research provides a solution based on deep learning in the screening of cotton leaves which makes it possible to monitor the health of the cotton crop and make better decisions for its management. With the learning models GoogleNet and Resnet50 using convolutional neural networks, a precision of 86.6% and 89.2%, respectively, was obtained. Compared with traditional approaches for the processing of images such as support vector machines (SVM), Closest k-neighbors (KNN), artificial neural networks (ANN) and neuro-fuzzy (NFC), the convolutional neural networks proved to be up to 25% more precise, suggesting that this method can contribute to a more rapid and reliable inspection of the plants growing in the field.

Keywords: artificial intelligence; convolutional neural networks; image processing; precision agriculture.

MeSH terms

  • Algorithms
  • Deep Learning*
  • Neural Networks, Computer
  • Plant Leaves
  • Support Vector Machine