Supramolecular Frameworks Based on Rhenium Clusters Using the Synthons Approach

Molecules. 2021 May 1;26(9):2662. doi: 10.3390/molecules26092662.

Abstract

The reaction of the K4[{Re6Si8}(OH)a6]·8H2O rhenium cluster salt with pyrazine (Pz) in aqueous solutions of alkaline or alkaline earth salts at 4 °C or at room temperature leads to apical ligand exchange and to the formation of five new compounds: [trans-{Re6Si8}(Pz)a2(OH)a2(H2O)a2] (1), [cis-{Re6Si8}(Pz)a2(OH)a2(H2O)a2] (2), (NO3)[cis-{Re6Si8}(Pz)a2(OH)a(H2O)a3](Pz)·3H2O (3), [Mg(H2O)6]0.5[cis-{Re6Si8}(Pz)a2(OH)a3(H2O)a]·8.5H2O (4), and K[cis-{Re6Si8}(Pz)a2(OH)a3(H2O)a]·8H2O (5). Their crystal structures are built up from trans- or cis-[{Re6Si8}(Pz)a2(OH)a4-x(H2O)ax]x-2 cluster units. The cohesions of the 3D supramolecular frameworks are based on stacking and H bonding, as well as on H3O2-bridges in the cases of (1), (2), (4), and (5) compounds, while (3) is built from stacking and H bonding only. This evidences that the nature of the synthons governing the cluster unit assembly is dependent on the hydration rate of the unit.

Keywords: crystal engineering; rhenium sulfide cluster; supramolecular framework; synthon; topology.