Multidimensional Ti3C2Tx MXene Architectures via Interfacial Electrochemical Self-Assembly

ACS Nano. 2021 Jun 22;15(6):10058-10066. doi: 10.1021/acsnano.1c01727. Epub 2021 Jun 1.

Abstract

An effective pathway to build macroscopic scale functional architectures bearing diverse structural dimensions is one of the critical challenges in the two-dimensional (2D) MXene research area. Unfortunately, assembling MXene without adhesive binder is largely limited due to its innate brittle nature and the relatively weak inter-flake van der Waals contact, in contrast to other mechanically compliant 2D materials such as graphene. Herein, an electrochemical self-assembly of pure Ti3C2Tx MXenes is presented for functional multidimensional MXene structures, effectively driven by layer-by-layer spontaneous interfacial reduction at metal template surfaces and subsequent defunctionalization. A three-dimensional open porous aerogel as well as 2D highly stacked thin film structures could be readily obtained in this approach, along with largely enhanced electrical properties induced by spontaneous removal of charge-trapping oxygen functional groups. Accordingly, supercapacitors and electromagnetic interference shielding films based on the multidimensional assembly demonstrate excellent performances.

Keywords: MXene; assembly; electromagnetic interference shielding; energy storage; gelation.