STRs: Ancient Architectures of the Genome beyond the Sequence

J Mol Neurosci. 2021 Dec;71(12):2441-2455. doi: 10.1007/s12031-021-01850-6. Epub 2021 May 30.

Abstract

Short tandem repeats (STRs) are commonly defined as short runs of repetitive nucleotides, consisting of tandemly repeating 2-6- bp motif units, which are ubiquitously distributed throughout genomes. Functional STRs are polymorphic in the population, and their variations influence gene expression, which subsequently may result in pathogenic phenotypes. To understand STR phenotypic effects and their functional roles, we describe four different mutational mechanisms including the unequal crossing-over model, gene conversion, retrotransposition mechanism and replication slippage. Due to the multi-allelic nature, small length, abundance, high variability, codominant inheritance, nearly neutral evolution, extensive genome coverage and simple assaying of STRs, these markers are widely used in various types of biological research, including population genetics studies, genome mapping, molecular epidemiology, paternity analysis and gene flow studies. In this review, we focus on the current knowledge regarding STR genomic distribution, function, mutation and applications.

Keywords: Functional STRs; Genetic marker; Mutational mechanisms; Neurological diseases; Short tandem repeat (STR).

Publication types

  • Review

MeSH terms

  • Animals
  • Genetic Testing / methods
  • Genome-Wide Association Study / methods
  • Humans
  • Microsatellite Repeats*
  • Polymorphism, Genetic