Optical Coherence Tomography for Ophthalmology Imaging

Adv Exp Med Biol. 2021:3233:197-216. doi: 10.1007/978-981-15-7627-0_10.

Abstract

Optical coherence tomography (OCT) is a depth-resolved imaging modality, which is able to achieve micrometer-scale resolution within biological tissue noninvasively. In the past 30 years, researchers all around the world had made several essential efforts on techniques relevant to OCT. OCT has become a routine process for eye diseases with different types. In this chapter, the three important stages in the development of OCT are briefly illustrated, including the time domain OCT (TD-OCT), the frequency domain OCT (FD-OCT) and the optical coherence tomography angiography (OCTA). Each of the technique has made great progress for use on living human eye imaging in clinical applications. TD-OCT was first proposed and commercialized, which is able to achieve acceptable 2D depth-resolved cross-sectional images of human retina in vivo. FD-OCT was the upgraded OCT technique compared with TD-OCT. By capturing the coherent signal within the Fourier space, the FD-OCT could improve the image sensitivity compared with TD-OCT, and achieve dozens of kilo hertz imaging speed. OCTA is the newest developments of OCT technique, which is able to visualize the micro vasculature networks of human retina in vivo. With OCTA technique, the newest ophthalmologic OCT system is able to achieve detailed diagnosis for both micro-structure and vasculature abnormalities for clinical applications. The further development of OCT technique on imaging speed, contrast, resolution, field of view, and so on will make OCT to be a more powerful tool for clinical usages.

Keywords: Clinical application; Human eye; Imaging; OCT; OCTA.

MeSH terms

  • Cross-Sectional Studies
  • Eye Diseases*
  • Humans
  • Ophthalmology*
  • Retina / diagnostic imaging
  • Tomography, Optical Coherence