Engineering tin dioxide quantum dots in a hierarchical graphite and graphene oxide framework for lithium-ion storage

J Colloid Interface Sci. 2021 Oct 15:600:649-659. doi: 10.1016/j.jcis.2021.05.070. Epub 2021 May 18.

Abstract

The spontaneous aggregation and poor electronic conductivity are widely recognized as the main challenges for practically applied nano-sized tin dioxide-based anode candidates in lithium-ion batteries. This work describes a hierarchical graphite and graphene oxide (GO) framework stabilized tin dioxide quantum dot composite (SnO2@C/GO), which is synthesized by a solid-state ball-milling treatment and a water-phase self-assembly process. Characterization results demonstrate the engineered inside nanostructured graphite and outside GO layers from the SnO2@C/GO composite jointly contribute to a good immobilization effect for the SnO2 quantum dots. The hierarchical carbonaceous matrix supported SnO2 quantum dots could maintain good structure stability over a long cycling life under high current densities. As an anodic electrochemically active material for lithium-ion batteries, the SnO2@C/GO composite shows a high reversible capacity of 1156 mAh·g-1 at the current density of 1000 mA·g-1 for 350 continual cycles as well as good rate performance. The large pseudocapacitive behavior in this electrode is favorable for promoting the lithium-ion storage capability under higher current densities. The whole synthetic route is simple and effective, which probably has good potential for further development to massively fabricate high-performance electrode active materials for energy storage.

Keywords: Graphene oxide; Graphite; Lithium-ion batteries; Quantum dot; Tin dioxide.