On-Chip Multicolor Photoacoustic Imaging Flow Cytometry

Anal Chem. 2021 Jun 15;93(23):8134-8142. doi: 10.1021/acs.analchem.0c05218. Epub 2021 May 28.

Abstract

On-chip imaging flow cytometry has been widely used in cancer biology, immunology, microbiology, and drug discovery. Pure optical imaging combined with flow cytometry to derive chemical, structural, and morphological features of cells provides systematic insights into biological processes. However, due to the high concentration and strong optical attenuation of red blood cells, preprocessing is necessary for optical flow cytometry while dealing with whole blood. In this study, we develop an on-chip photoacoustic imaging flow cytometry (PAIFC), which combines multicolor high-speed photoacoustic microscopy and microfluidics for cell imaging. The device employs a micro-optical scanner to achieve a miniaturized outer size of 30 × 17 × 24 mm3 and ultrafast cross-sectional imaging at a frame rate of 1758 Hz and provides lateral and axial resolutions of 2.2 and 33 μm, respectively. Using a multicolor strategy, PAIFC is able to differentiate cells labeled by external contrast agents, detect melanoma cells with an endogenous contrast in whole blood, and image melanoma cells in blood samples from tumor-bearing mice. The results suggest that PAIFC has sufficient sensitivity and specificity for future cell-on-chip applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Erythrocytes
  • Flow Cytometry
  • Mice
  • Microscopy
  • Optical Imaging
  • Photoacoustic Techniques*