Coherent Wave Control in Complex Media with Arbitrary Wavefronts

Phys Rev Lett. 2021 May 14;126(19):193903. doi: 10.1103/PhysRevLett.126.193903.

Abstract

Wavefront shaping (WFS) has emerged as a powerful tool to control the propagation of diverse wave phenomena (light, sound, microwaves, etc.) in disordered matter for applications including imaging, communication, energy transfer, micromanipulation, and scattering anomalies. Nonetheless, in practice the necessary coherent control of multiple input channels remains a vexing problem. Here, we overcome this difficulty by doping the disordered medium with programmable meta-atoms in order to adapt it to an imposed arbitrary incoming wavefront. Besides lifting the need for carefully shaped incident wavefronts, our approach also unlocks new opportunities such as sequentially achieving different functionalities with the same arbitrary wavefront. We demonstrate our concept experimentally for electromagnetic waves using programmable metasurfaces in a chaotic cavity, with applications to focusing with the generalized Wigner-Smith operator as well as coherent perfect absorption. We expect our fundamentally new perspective on coherent wave control to facilitate the transition of intricate WFS protocols into real applications for various wave phenomena.