Impact of virtual reality headset use on eye blinking and lipid layer thickness

J Fr Ophtalmol. 2021 Sep;44(7):1029-1037. doi: 10.1016/j.jfo.2020.09.032. Epub 2021 May 24.

Abstract

Purpose: Blinking plays an important role in protecting the eyes, and the use of computers has been associated with a reduction in the blink rate. The goal of this study was to evaluate the effect of a virtual reality headset on blinking and lipid layer thickness and to compare these data to those associated with a conventional desktop monitor.

Methods: Two experiments were performed to compare the effect of 20minutes of use of a virtual reality headset (FOVE) and 20minutes of use of a desktop monitor on the frequency and length of blinks (experiment 1, 15 participants) and on the thickness of the lipid layer as measured by Lipiview (experiment 2, 12 participants).

Results: In the first experiment, the blink rate [F(1.83)=4.3, P=0.04, β=0.36] and duration [F(1.83)=13, P=0.001, β=0.35] increased with time under both conditions, but no statistical difference was found between the two conditions (headset vs. desktop monitor) either for blink rate [rmANOVA F(1.11)=0.01, P=0.92; headset: 15.1 blinks, 95% CI: 12.6 to 17.6 blinks; desktop: 14.6 blinks, 95% CI: 13.6 to 15.7 blinks] or for blink duration [rmANOVA F(1.11)=4.534, P=0.06; headset: 205.75ms, 95% CI: 200.9 to 210.6ms; desktop: 202.82ms, 95% CI: 198.2 to 207.5ms]. However, strong individual variations were observed. Evaluation of simulator sickness and visual fatigue by questionnaire showed no significant differences between the two conditions (SSQ simulator sickness questionnaire: V=46, P=0.62; VFQ visual fatigue questionnaire: V=15.5, P=0.13). In the second experiment, the lipid layer thickness increased significantly after use of the VR headset [F(1.18)=11.03, P=0.004, headset: 76.2nm, desktop: 58.8nm].

Conclusion: In terms of recommendations, the effect of virtual reality headsets on blink duration and frequency during a moderate exposure (20minutes) is comparable to that of a conventional desktop monitor. However, the strong individual variations observed, the lack of reliable tests to evaluate this individual sensitivity, and the significant increase in lipid layer thickness in experiment 2 suggest the value of a more detailed investigation, in particular with consideration of a longer exposure time and other tear film parameters.

Keywords: Blinking; Dry eye; LipiView; Lipid layer thickness; L’épaisseur de la couche lipidique; Nictation; Réalité virtuelle; Sécheresse oculaire; VR headset; Virtual reality; Visiocasque.

MeSH terms

  • Blinking
  • Dry Eye Syndromes*
  • Humans
  • Lipids
  • Tears
  • Virtual Reality*

Substances

  • Lipids