One-Pot and Shape-Controlled Synthesis of Organic Cages

Angew Chem Int Ed Engl. 2021 Aug 9;60(33):17904-17909. doi: 10.1002/anie.202104875. Epub 2021 Jul 2.

Abstract

Organic cages are fascinating because of their well-defined 3D cavities, excellent stability, and accessible post-modification. However, the synthesis is normally realized by fragment coupling approach in low yields. Herein, we report one-pot, gram-scale and shape-controlled synthesis of two covalent organic cages (box-shaped [4]cage and triangular prism-shaped [2]cage) in yields of 46 % and 52 %, involving direct condensation of triangular 1,3,5-tris(2,4-dimethoxyphenyl)benzene monomer with paraformaldehyde and isobutyraldehyde, respectively. The cages can convert into high-yielding per-hydroxylated analogues. The [2]cage can be utilized as gas chromatographic stationary phase for high-resolution separation of benzene/cyclohexane and toluene/methylcyclohexane. By changing the central moiety of the triangular monomer and/or aldehyde, this synthetic method would have the potential to be a general strategy to access diverse cages with tunable shape, size, and electronic properties.

Keywords: chromatographic separation; covalent organic cages; macrocyclic arenes; supramolecular chemistry; synthesis.