Optimal timing of PD-1 blockade in combination with oncolytic virus therapy

Semin Cancer Biol. 2022 Nov;86(Pt 3):971-980. doi: 10.1016/j.semcancer.2021.05.019. Epub 2021 May 24.

Abstract

Anti-PD-1 and oncolytic viruses (OVs) have non-overlapping anti-tumor mechanisms, since each agent works at different steps of the cancer-immunity cycle. Evidence suggests that OVs improve therapeutic responses to anti-PD-1 therapy by reversing immunosuppressive factors, increasing the number and diversity of infiltrating lymphocytes, and promoting PD-L1 expression in both injected and non-injected tumors. Many studies in preclinical models suggest that the timing of anti-PD-1 administration influences the therapeutic success of the combination therapy (anti-PD-1 + OV). Therefore, determining the appropriate sequencing of agents is of critical importance to designing a rationale OV-based combinational clinical trial. Currently, the combination of anti-PD-1 and OVs are being delivered using various schedules, and we have classified the timing of administration of anti-PD-1 and OVs into five categories: (i) anti-PD-1 lead-in → OV; (ii) concurrent administration; (iii) OV lead-in → anti-PD-1; (iv) concurrent therapy lead-in → anti-PD-1; and (v) OV lead-in → concurrent therapy. Based on the reported preclinical and clinical literature, the most promising treatment strategy to date is hypothesized to be OV lead-in → concurrent therapy. In the OV lead-in → concurrent therapy approach, initial OV treatment results in T cell priming and infiltration into tumors and an immunologically hot tumor microenvironment (TME), which can be counterbalanced by engagement of PD-L1 to PD-1 receptor on immune cells, leading to T cell exhaustion. Therefore, after initial OV therapy, concurrent use of both OV and anti-PD-1 is critical through which OV maintains T cell priming and an immunologically hot TME, whereas PD-1 blockade helps to overcome PD-L1/PD-1-mediated T cell exhaustion. It is important to note that the hypothetical conclusion drawn in this review is based on thorough literature review on current understanding of OV + anti-PD-1 combination therapies and rhythm of treatment-induced cancer-immunity cycle. A variety of confounding factors such as tumor types, OV types, presence or absence of cytokine transgenes carried by an OV, timing of treatment initiation, varying dosages and treatment frequencies/duration of OV and anti-PD-1, etc. may affect the validity of our conclusion that will need to be further examined by future research (such as side-by-side comparative studies using all five treatment schedules in a given tumor model).

Keywords: Anti-PD-1 timing; Combination virotherapy; Immune checkpoint inhibitor; Oncolytic virus; PD-1 blockade.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • B7-H1 Antigen / genetics
  • Humans
  • Neoplasms* / therapy
  • Oncolytic Virotherapy* / methods
  • Oncolytic Viruses* / genetics
  • Tumor Microenvironment

Substances

  • B7-H1 Antigen