Elucidating End-Group Modifications of Carbazole-Based Nonfullerene Acceptors in Indoor Applications for Achieving a PCE of over 20

ACS Appl Mater Interfaces. 2021 Jun 9;13(22):26247-26255. doi: 10.1021/acsami.1c06360. Epub 2021 May 25.

Abstract

In this work, two DTSiC-based nonfullerene acceptors (NFAs), (2,2'-((2Z,2'Z)-((12-(heptadecan-9-yl)-4,4,7,7-tetraoctyl-7,12-dihydro-4H-thieno[2',3':4,5]silolo[3,2-b]thieno[2',3':4,5]silolo[2,3-h]carbazole-2,9-diyl)bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) (DTSiC-IC) and (2,2'-((5Z,5'Z)-((12-(heptadecan-9-yl)-4,4,7,7-tetraoctyl-7,12-dihydro-4H-thieno[2',3':4,5]silolo[3,2-b]thieno[2',3':4,5]silolo[2,3-h]carbazole-2,9-diyl)bis(methaneylylidene))bis(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophene-5,4-diylidene))dimalononitrile) (DTSiC-TC), are designed with various end groups (IC and TC). To explore the effect of end-group modifications, photovoltaic performance under AM 1.5G and indoor conditions are comprehensively studied. Compared with DTSiC-IC, DTSiC-TC manifests red-shifted and stronger absorption, downshifted lowest unoccupied molecular orbital (LUMO), and pronounced face-on packing characteristics. As we envisaged, the PM7:DTSiC-TC-based devices outperform the PM7:DTSiC-IC-based devices in both AM 1.5G and indoor (light-emitting diode (LED) 3000 K 1000 lux) conditions with overall higher JSC, FF, and power conversion efficiency (PCE). Furthermore, the PM7:DTSiC-TC-based devices achieve an outstanding PCE of 20.73% with a VOC of 0.87 V, a JSC of 0.095 mA/cm2, and an FF of 70.86%.

Keywords: carbazole; end-group modification; indoor application; nonfullerene acceptor; organic solar cells.