Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO

Sci Total Environ. 2021 Jul 20:779:146435. doi: 10.1016/j.scitotenv.2021.146435. Epub 2021 Mar 15.

Abstract

This study focused upon the estimation and analysis of terrestrial water storage (TWS changes) across the Canadian landscape. The estimation was performed using Gravity Recovery and Climate Experiment (GRACE) data from April 2002 to June 2017, and GRACE Follow-On (GRACE-FO) observations from June 2018 to December 2019. Removing the gravity effects of Glacial Isostatic Adjustment (GIA) signals and leakage is required to have realistic estimations of TWS changes in the Canadian landmass. In this study, GIA correction was based on a regional-scale modeling of uplift rate. To evaluate the performance compared to the latest GIA models, a comparison was made to uplift rate derived from 149 GPS stations over the study area. Refined TWS changes showed strong seasonal patterns (between -160 mm and 80 mm). The slope of the trend was positive (6.6 mm/year) for the period combining both GRACE and GRACE-FO. The trend increases to 45 mm/year over the 17-year period across central Canada, especially in regions surrounding Hudson Bay. For GRACE, maximum TWS variations occurred between February and April; for GRACE-FO, it occurred with a 2-month lag earlier during the short period being considered. Uncertainties in TWS variations that were derived by GRACE increased towards the end of the mission. Uncertainty for GRACE-FO is lower than that at the beginning of GRACE. The TWS changes extracted from the used approach were compared to Mascon solutions TWS changes products (GRCTellus JPL MSCNv02 and CSR MSCNv02), by using two steps: 1) the Water Global Assessment Prognosis hydrological model (WGHM), and 2) TWS changes derived from in-situ precipitation and potential evapotranspiration data. In all the cases our approach provided the best correlations and lower root mean square errors, compared to the Mascon products.

Keywords: Canada; GRACE; GRACE-FO; Glacial Isostatic adjustment; Terrestrial water storage changes.