Wildlife-friendly farming recouples grazing regimes to stimulate recovery in semi-arid rangelands

Sci Total Environ. 2021 Sep 20:788:147602. doi: 10.1016/j.scitotenv.2021.147602. Epub 2021 May 11.

Abstract

While rangeland ecosystems are globally important for livestock production, they also support diverse wildlife assemblages and are crucial for biodiversity conservation. As rangelands around the world have become increasingly degraded and fragmented, rethinking farming practice in these landscapes is vital for achieving conservation goals, rangeland recovery, and food security. An example is reinstating livestock shepherding, which aims to recouple grazing regimes to vegetation conditioned to semi-arid climates and improve productivity by reducing overgrazing and rewiring past ecological functions. Tracking the large-scale ecosystem responses to shifts in land management in such sparsely vegetated environments have so far proven elusive. Therefore, our goal was to develop a remote tracking method capable of detecting vegetation changes and environmental responses on rangeland farms engaging in contrasting farming practices in South Africa: wildlife friendly farming (WFF) implementing livestock shepherding with wildlife protection, or rotational grazing livestock farming with wildlife removal. To do so, we ground-truthed Sentinel-2 satellite imagery using drone imagery and machine learning methods to trace historical vegetation change on four farms over a four-year period. First, we successfully classified land cover maps cover using drone footage and modelled vegetation cover using satellite vegetation indices, achieving 93.4% accuracy (к = 0.901) and an r-squared of 0.862 (RMSE = 0.058) respectively. We then used this model to compare the WFF farm to three neighbouring rotational grazing farms, finding that satellite-derived vegetation productivity was greater and responded more strongly to rainfall events on the WFF farm. Furthermore, vegetation cover and grass cover, patch size, and aggregation were greater on the WFF farm when classified using drone data. Overall, we found that remotely assessing regional environmental benefits from contrasting farming practices in rangeland ecosystems could aid further adoption of wildlife-friendly practices and help to assess the generality of this case study.

Keywords: Drone; Grazing pressure; Livestock shepherding; Rangeland management; Vegetation cover; Wildlife coexistence.

MeSH terms

  • Agriculture
  • Animals
  • Animals, Wild*
  • Conservation of Natural Resources
  • Ecosystem*
  • Farms
  • South Africa