Optimal control pulses for subspectral editing in low field NMR

J Magn Reson. 2021 Jul:328:106993. doi: 10.1016/j.jmr.2021.106993. Epub 2021 Apr 30.

Abstract

Low field NMR is an inexpensive and low footprint technique to obtain physical, chemical, electronic and structural information on small molecules, but suffers from poor spectral dispersion, especially when applied to the analysis of mixtures. Subspectral editing employing optimal control pulses is a suitable approach to cope with the severe signal superpositions in complex mixture spectra at low field. In this contribution, the use of optimal control pulses is demonstrated to be feasible at a field strength as low as 0.5 T. The optimal control pulse shapes were calculated using the Krotov algorithm. Downsizing the complexity of the algorithm from exponential to polynomial is shown to be possible by using a system approach with each system corresponding to a (small) molecule. In this way compound selective excitation pulses can be calculated. The signals of substructures of the cyclopentenone molecule were excited using optimal control pulses calculated by the Krotov algorithm demonstrating the feasibility of subspectral editing. Likewise, for a mixture of benzoic acid and alanine, editing of the signals of either benzoic acid or alanine employing optimal control pulses was shown to be possible. The obtained results are very promising and can be extended to the targeted analysis of complex mixtures such as biofluids or metabolic samples at low field strengths opening access for benchtop NMR to point of care settings.

Keywords: Krotov algorithm; Low field NMR; Metabolite; Optimal control pulses; Spin system editing; Subspectral editing.

Publication types

  • Research Support, Non-U.S. Gov't