Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium-Metal Batteries

Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19232-19240. doi: 10.1002/anie.202104671. Epub 2021 Aug 1.

Abstract

Despite high specific capacity (3860 mAh g-1 ), the utilization of Li-metal anodes in rechargeable batteries are still hampered due to their insufficient cyclability. Herein, we report an anion-receptor-mediated carbonate electrolyte with improved performance and can ameliorate the solid electrolyte interphase (SEI) composition comparing to the blank electrolyte. It demonstrates a high average Coulombic efficiency (97.94 %) over 500 cycles in the Li/Cu cell at a capacity of 1 mAh cm-2 . Raman spectrum and molecular modelling further clarify the screening effects of the anion receptor on the Li+ -PF6 - ion coupling that results in the enhanced ion dynamics. The X-ray photoelectron spectroscopy (XPS) distinguishes the disparities in the SEI components of the developed electrolyte and the blank one, which is rationalized by the molecular insights of the Li-metal/electrolyte interface. Thus, we prepare a 2.5 Ah prototype pouch cell, exhibiting a high energy density (357 Wh kg-1 ) with 90.90 % capacity retention over 50 cycles.

Keywords: EDL regulation; SEI formation; anion receptors; lithium-metal anodes; pouch cells.