Evaluation of High-Intensity Interval Training and Beta-Alanine Supplementation on Efficiency of Electrical Activity and Electromyographic Fatigue Threshold

J Strength Cond Res. 2021 Jun 1;35(6):1535-1541. doi: 10.1519/JSC.0000000000004038.

Abstract

Herda, AA, Smith-Ryan, AE, Kendall, KL, Cramer, JT, and Stout, JR. Evaluation of high-intensity interval training and beta-alanine supplementation on efficiency of electrical activity and electromyographic fatigue threshold. J Strength Cond Res 35(6): 1535-1541, 2021-The purpose of this study was to determine the effects of high-intensity interval training (HIIT) with or without β-alanine (BA) supplementation on the electromyographic fatigue threshold (EMGFT) and efficiency of electrical activity (EEA) in young women. Forty-four women (mean ± SD; age [yrs]: 21.7 ± 3.7; height [cm]: 166.3 ± 6.4; body mass [kg]: 66.1 ± 10.3) were randomly assigned to one of 3 treatment groups. The supplement groups performed HIIT on the cycle ergometer 3 times·wk-1 for 6 weeks. Electromyographic fatigue threshold and EEA were assessed at baseline (PRE), after 3 weeks of training (MID), and after 6 weeks of HIIT (POST). Two 2-way mixed factorial analyses of variance (time [PRE vs. MID vs. POST] × treatment (BA vs. PL vs. CON)] were used to analyze EMGFT and EEA with a predetermined level of significance α of 0.05. For EMGFT, there was no interaction (p = 0.26) and no main effect for time (p = 0.28) nor treatment (p = 0.86); thus, there were no changes in EMGFT regardless of training or supplementation status. For EEA, there was no interaction (p = 0.70) nor treatment (p = 0.79); however, there was a main effect for time (p < 0.01). Our findings indicated that neither training nor supplementation was effective in improving EMGFT in women. Efficiency of electrical activity was altered, potentially because of a learning effect. Coaches and practitioners may not use these tests to monitor training status; however, they may find EEA as a useful tool to track cycling efficiency.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Dietary Supplements
  • Electromyography
  • Exercise Test
  • Fatigue
  • Female
  • High-Intensity Interval Training*
  • Humans
  • Muscle Fatigue
  • Oxygen Consumption
  • beta-Alanine

Substances

  • beta-Alanine