Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer

Proc Natl Acad Sci U S A. 2021 May 25;118(21):e2016904118. doi: 10.1073/pnas.2016904118.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.

Keywords: BioID; KRAS; NF1; PDAC; RSK.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Carcinoma, Pancreatic Ductal / genetics*
  • Carcinoma, Pancreatic Ductal / pathology
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Humans
  • Mice
  • Mutation
  • Neurofibromin 1 / genetics*
  • Pancreas / pathology
  • Proto-Oncogene Proteins p21(ras) / genetics*
  • Repressor Proteins / genetics
  • Ribosomal Protein S6 Kinases, 90-kDa / genetics*
  • Signal Transduction / genetics

Substances

  • KRAS protein, human
  • NF1 protein, human
  • Neurofibromin 1
  • Repressor Proteins
  • SPRED2 protein, human
  • RPS6KA1 protein, human
  • Ribosomal Protein S6 Kinases, 90-kDa
  • Proto-Oncogene Proteins p21(ras)