Susceptibility of individuals with lung dysfunction to systemic inflammation associated with ambient fine particle exposure: A panel study in Beijing

Sci Total Environ. 2021 Sep 20:788:147760. doi: 10.1016/j.scitotenv.2021.147760. Epub 2021 May 15.

Abstract

Background: The underlying mechanism on the susceptibility of chronic obstructive pulmonary disease (COPD) patients to air pollution has yet to be clarified.

Objectives: Based on the COPD in Beijing (COPDB) study, we examined whether lung dysfunction contributed to pollutant-associated systemic inflammation in COPD patients.

Methods: Proinflammatory biomarkers including interleukin-8 (IL-8) and tumor necrosis factor α (TNFα) were measured in serum samples collected from 53 COPD and 82 healthy participants. Concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), carbonaceous components in PM2.5, and PM size distribution were continuously monitored. Linear mixed effects models were used to examine the associations of biomarker differences with particle exposure, between COPD and healthy participants, and across subgroups with different levels of lung dysfunction.

Results: COPD patients showed higher differences in IL-8 and TNFα levels associated with exposure to measured pollutants, comparing to healthy controls. In advanced analysis, particle-associated differences in IL-8 and TNFα levels were higher in participants with poorer lung ventilation and diffusion capacity, and higher ratio of residual volume. For example, an interquartile range increase in average PM2.5 concentration 2 weeks before visits was associated with a 15.7% difference in IL-8 level in participants with the lowest ratio of measured value to predicted value of forced expiratory volume in 1 s (FEV1%pred) (65.2%), and the association decreased monotonically with increasing FEV1%pred. Associations between differences in TNFα level and average ultrafine particle concentration 1 week before visits increased gradually with increasing ratio of measured value to predicted value of residual volume/total lung capacity.

Conclusions: COPD patients, especially those with poorer lung function, are more susceptible to systemic inflammation associated with fine particle exposure.

Keywords: COPD; Carbonaceous component; Lung diffusion; Lung ventilation; Residual volume; Ultrafine particle.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Air Pollution* / analysis
  • Beijing / epidemiology
  • Environmental Exposure / adverse effects
  • Environmental Exposure / analysis
  • Humans
  • Inflammation / chemically induced
  • Lung
  • Particulate Matter / analysis
  • Particulate Matter / toxicity
  • Pulmonary Disease, Chronic Obstructive* / epidemiology

Substances

  • Air Pollutants
  • Particulate Matter