Effects of cardiorespiratory fitness and exercise training on cerebrovascular blood flow and reactivity: a systematic review with meta-analyses

Am J Physiol Heart Circ Physiol. 2021 Jul 1;321(1):H59-H76. doi: 10.1152/ajpheart.00880.2020. Epub 2021 May 21.

Abstract

We address two aims: Aim 1 (Fitness Review) compares the effect of higher cardiorespiratory fitness (CRF) (e.g., endurance athletes) with lower CRF (e.g., sedentary adults) on cerebrovascular outcomes, including middle cerebral artery velocity (MCAv), cerebrovascular reactivity and resistance, and global cerebral blood flow, as assessed by transcranial Doppler (TCD) or magnetic resonance imaging (MRI). Aim 2 (Exercise Training Review) determines the effect of exercise training on cerebrovascular outcomes. Systematic review of studies with meta-analyses where appropriate. Certainty of evidence was assessed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Twenty studies (18 using TCD) met the eligibility criteria for Aim 1, and 14 studies (8 by TCD) were included for Aim 2. There was a significant effect of higher CRF compared with lower CRF on cerebrovascular resistance (effect size = -0.54, 95% confidence interval = -0.91 to -0.16) and cerebrovascular reactivity (0.98, 0.41-1.55). Studies including males only demonstrated a greater effect of higher CRF on cerebrovascular resistance than mixed or female studies (male only: -0.69, -1.06 to -0.32; mixed and female studies: 0.10, -0.28 to 0.49). Exercise training did not increase MCAv (0.05, -0.21 to 0.31) but showed a small nonsignificant improvement in cerebrovascular reactivity (0.60, -0.08 to 1.28; P = 0.09). Exercise training showed heterogeneous effects on regional but little effect on global cerebral blood flow as measured by MRI. High CRF positively effects cerebrovascular function, including decreased cerebrovascular resistance and increased cerebrovascular reactivity; however, global cerebral blood flow and MCAv are primarily unchanged following an exercise intervention in healthy and clinical populations.NEW & NOTEWORTHY Higher cardiorespiratory fitness is associated with lower cerebrovascular resistance and elevated cerebrovascular reactivity at rest. Only adults with a true-high fitness based on normative data exhibited elevated middle cerebral artery velocity. The positive effect of higher compared with lower cardiorespiratory fitness on resting cerebrovascular resistance was more evident in male-only studies when compared with mixed or female-only studies. A period of exercise training resulted in negligible changes in middle cerebral artery velocity and global cerebral blood flow, with potential for improvements in cerebrovascular reactivity.

Keywords: aerobic training; cerebral blood flow; cerebrovascular function; physical activity; transcranial Doppler.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Blood Flow Velocity / physiology
  • Cardiorespiratory Fitness / physiology*
  • Cerebrovascular Circulation / physiology*
  • Exercise / physiology*
  • Hemodynamics / physiology
  • Humans

Associated data

  • figshare/10.6084/m9.figshare.14327765