Photo-driven Oxygen Vacancies Extends Charge Carrier Lifetime for Efficient Solar Water Splitting

Angew Chem Int Ed Engl. 2021 Aug 2;60(32):17601-17607. doi: 10.1002/anie.202104754. Epub 2021 Jun 30.

Abstract

A photocharge/discharge strategy is proposed to initiate the WO3 photoelectrode and suppress the main charge recombination, which remarkably improves the photoelectrochemical (PEC) performance. The photocharged WO3 surrounded by a 8-10 nm overlayer and oxygen vacancies could be operated more than 25 cycles with 50 h durability without significant decay on PEC activity. A photocharged WO3 /CuO photoanode exhibits an outstanding photocurrent of 3.2 mA cm-2 at 1.23 VRHE with a low onset potential of 0.6 VRHE , which is one of the best performances of p-n heterojunction structure. Using nonadiabatic molecular dynamics combined with time-domain DFT, we clarify the prolonged charge carrier lifetime of photocharged WO3 , as well as how electronic systems of photocharged WO3 /CuO semiconductors enable the effective photoinduced electrons transfer from WO3 into CuO. This work provides a feasible route to address excessive defects existed in photoelectrodes without causing extra recombination.

Keywords: oxygen vacancies; p-n heterojunctions; photocharging/discharging; solar water splitting; tungsten.