Consecutive Ligand-Based Electron Transfer in New Molecular Copper-Based Water Oxidation Catalysts

Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18639-18644. doi: 10.1002/anie.202104020. Epub 2021 Jul 16.

Abstract

Water oxidation to dioxygen is one of the key reactions that need to be mastered for the design of practical devices based on water splitting with sunlight. In this context, water oxidation catalysts based on first-row transition metal complexes are highly desirable due to their low cost and their synthetic versatility and tunability through rational ligand design. A new family of dianionic bpy-amidate ligands of general formula H2 LNn- (LN is [2,2'-bipyridine]-6,6'-dicarboxamide) substituted with phenyl or naphthyl redox non-innocent moieties is described. A detailed electrochemical analysis of [(L4)Cu]2- (L4=4,4'-(([2,2'-bipyridine]-6,6'-dicarbonyl)bis(azanediyl))dibenzenesulfonate) at pH 11.6 shows the presence of a large electrocatalytic wave for water oxidation catalysis at an η=830 mV. Combined experimental and computational evidence, support an all ligand-based process with redox events taking place at the aryl-amide groups and at the hydroxido ligands.

Keywords: first-row transition metal complexes; reaction mechanisms; redox non-innocent ligand; water oxidation catalysis; water splitting.