Polyvinylidene Fluoride Core-Shell Nanofiber Membranes with Highly Conductive Shells for Electromagnetic Interference Shielding

ACS Appl Mater Interfaces. 2021 Jun 2;13(21):25428-25437. doi: 10.1021/acsami.1c06230. Epub 2021 May 20.

Abstract

As the demand for wireless sensors and equipment is unprecedentedly increasing, the interest in electromagnetic interference (EMI)-shielding materials that can effectively block accompanying electromagnetic interference is also constantly increasing. In particular, flexible and lightweight EMI-shielding materials that exhibit high EMI-shielding effectiveness (SE) have been more actively investigated as they are applicable to various applications. In this work, we reported the fabrication and performance of conducting polymer nanofiber EMI-shielding material, which was realized using electrospun polyvinylidene fluoride (PVDF) core-shell nanofiber membranes with highly conductive shells. Using the chemical polymerization method, core-shell nanofibers with highly conductive shells were employed without compositing with conductive fillers, resulting in shell-conductive lightweight EMI-shielding material without impairing the original properties of the nanofiber. In particular, thanks to the nanofiber structure, the EMI-shielding material exhibits superb flexibility, and the EMI SE was also improved through the enhanced absorption of EM waves and multireflections by the porous nanofiber film structure. Specifically, the developed EMI-shielding material in this work exhibited a SE of ∼40 dB in the X-band, which corresponds to an absolute shielding effectiveness (SSEt) of 16,230 dB·cm2/g at a thickness of 14 μm. Moreover, the high durability and hydrophobicity of the PVDF nanofibers with poly (3,4-ethylenedioxythiophene) (PEDOT)-polymerized shell can also be useful in practical applications.

Keywords: core−shell nanofiber; electrically conducting nanofiber; emi-shielding materials; flexibility; self-cleaning.