China's carbon emissions from the electricity sector: Spatial characteristics and interregional transfer

Integr Environ Assess Manag. 2022 Jan;18(1):258-273. doi: 10.1002/ieam.4464. Epub 2021 Jul 7.

Abstract

As a major carbon emitter, the electricity sector is crucial to the realization of China's emission reduction objectives. Existing studies focus mostly on the influencing factors, emission efficiency and low carbon development of carbon emissions in the electricity sector. Missing from the literature is an analysis of spatial characteristics of carbon emissions and the embodied carbon emission transfer caused by the separation of electricity production and consumption, which is the basis for assigning the responsibility for emission reduction. Thirty provinces in China were taken as research objects, and Moran's I index was adopted to analyze the spatial characteristics of the electricity sector's carbon emissions and carbon emission intensity. Based on multiregional input-output tables, we compared the transfer situation of China's provincial electricity carbon emissions in 2010 and 2015. The results demonstrate that, from 2010 to 2015, the electricity carbon emissions in 20 provinces increased, whereas the carbon emission intensity in 21 provinces decreased. Carbon emissions and carbon emission intensity of electricity in most provinces demonstrate positive spatial clustering characteristics. The total amount of carbon emission transfer in the electricity sector increased from 421.22 million tons in 2010 to 581.369 million tons in 2015, the number of net transfers out of areas increased from 13 to 15, and the number of net transfers into areas decreased from 16 to 15. The active degree of carbon emission transfer reveals the eastern region > the central region > the western region. Different emission reduction policies should be formulated based on the difference in resource endowment between the north and south. Provinces that transferred out large amounts of electricity carbon emissions should take greater responsibility for emission reduction. Integr Environ Assess Manag 2022;18:258-273. © 2021 SETAC.

Keywords: Carbon emission intensity; Carbon emission transfer; Carbon emissions; Electricity sector; Spatial correlation.

MeSH terms

  • Carbon Dioxide* / analysis
  • Carbon* / analysis
  • China
  • Economic Development
  • Electricity

Substances

  • Carbon Dioxide
  • Carbon