Designing and validation of an automated ex-vivo bioreactor system for long term culture of bone

Bone Rep. 2021 Apr 24:14:101074. doi: 10.1016/j.bonr.2021.101074. eCollection 2021 Jun.

Abstract

Several different bioreactors have been developed to study bone biology. Keeping a bone viable for long-term studies is still a challenge. We have developed an ex-vivo bone bioreactor that can keep the ex-vivo live bone viable for more than 4 weeks. Keeping a bone viable for over a month can be used as an alternative model for in-vivo experiments in animals. We hypothesize that the perfusion flow and mechanical load on the bone provide a real-time environment for the bone to survive. Cancellous bones were harvested from the bovine metatarsals and were placed in the dynamic culture with cyclic loading at regular intervals. After a period of week 4, the bone cores were retrieved from the bioreactor and tested for viability using calcein-AM and ethidium homodimer -1 fluorescent dyes and were compared with the cores that were placed in static culture with and without any loads on them and Day 0 bone core that acted as a positive control. The bone blocks were then fixed in 10% formalin, and bone mineral density was evaluated using a DXA scanner before staining them for H&E to study the morphological changes. Results revealed that the bone cultured in the bioreactor was viable as compared to the one in the static culture with and without constant load. Bone cores cultured in our ex-vivo bioreactor system also maintained their morphology and no statistical difference was found in the bone mineral density compared to positive controls and the statistical difference was found when compared with the cores cultured in static culture. This tool can be used to study bone biology for various applications such as bone ingrowth studies, to study the effect of drugs, hormones, or any growth factors, and much more.

Keywords: Bioengineering; Bioreactor; Bone culture; Ex-vivo; Mechanical loading; Perfusion flow.